import pandas as pd
d1 = pd.read_csv('Engine_CC.csv')
d2 = pd.read_csv('Female.csv')
d3 = pd.read_csv('Fuel.csv')
d4 = pd.read_csv('Male.csv')
d5 = pd.read_csv('Manufacturer.csv')
d6 = pd.read_csv('Model.csv')
d7 = pd.read_csv('Power.csv')
d8 = pd.read_csv('Price.csv')
d9 = pd.read_csv('Total.csv')
d10 = pd.read_csv('Transmission.csv')
d11 = pd.read_csv('Unknown.csv')
df = pd.merge(pd.merge(d1,d2,on='Index'),d3,on='Index')
df2 = pd.merge(pd.merge(df,d4,on='Index'),d5,on='Index')
df3 = pd.merge(pd.merge(df2,d6,on='Index'),d7,on='Index')
df4 = pd.merge(pd.merge(df3,d8,on='Index'),d9,on='Index')
merged_df = pd.merge(pd.merge(df4,d10,on='Index'),d11,on='Index')
merged_df.head() #Checking First 5 rows of Merged Dataframe
Index | Engine CC | Female | Fuel | Male | Manufacturer | Model | Power | Price | Total | Transmission | Unknown | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 1497.169492 | 422731 | petrol | 814172 | Ford | Focus | -94.033898 | 30.619322 | 1293390 | 5.966102 | 56,487 |
1 | 1 | 1166.142857 | 631666 | petrol | 554879 | Ford | Fiesta | 68.571429 | 18.532143 | 1240602 | 5000.714286 | 54,057 |
2 | 2 | 1537.406593 | 310604 | petrol | 483216 | Volkswagen | Golf | -89.461538 | 31.242154 | 841383 | 6.164835 | 47,563 |
3 | 3 | 1219.653846 | 312556 | petrol | 241287 | Renault | Clio | 75.576923 | 22.100000 | 581847 | 5.615385 | 28,004 |
4 | 4 | 1995.777778 | 115843 | petrol | 408016 | BMW | 320i | 126.111111 | 47.848370 | 552984 | 6.444444 | 29,125 |
merged_df.drop("Index", axis=1, inplace=True) #Dropping index column in merged dataframe
merged_df.head()
Engine CC | Female | Fuel | Male | Manufacturer | Model | Power | Price | Total | Transmission | Unknown | |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1497.169492 | 422731 | petrol | 814172 | Ford | Focus | -94.033898 | 30.619322 | 1293390 | 5.966102 | 56,487 |
1 | 1166.142857 | 631666 | petrol | 554879 | Ford | Fiesta | 68.571429 | 18.532143 | 1240602 | 5000.714286 | 54,057 |
2 | 1537.406593 | 310604 | petrol | 483216 | Volkswagen | Golf | -89.461538 | 31.242154 | 841383 | 6.164835 | 47,563 |
3 | 1219.653846 | 312556 | petrol | 241287 | Renault | Clio | 75.576923 | 22.100000 | 581847 | 5.615385 | 28,004 |
4 | 1995.777778 | 115843 | petrol | 408016 | BMW | 320i | 126.111111 | 47.848370 | 552984 | 6.444444 | 29,125 |
missing_data = merged_df.isnull()
missing_data.head(5)
Engine CC | Female | Fuel | Male | Manufacturer | Model | Power | Price | Total | Transmission | Unknown | |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | False | False | False | False | False | False | False | False | False | False | False |
1 | False | False | False | False | False | False | False | False | False | False | False |
2 | False | False | False | False | False | False | False | False | False | False | False |
3 | False | False | False | False | False | False | False | False | False | False | False |
4 | False | False | False | False | False | False | False | False | False | False | False |
#Checking for missing values in each column
#False = No NULL/Missing value
#True = Value is Missing
for column in missing_data.columns.values.tolist():
print(column)
print (missing_data[column].value_counts())
Engine CC False 6098 True 4 Name: Engine CC, dtype: int64 Female False 6097 True 5 Name: Female, dtype: int64 Fuel False 6097 True 5 Name: Fuel, dtype: int64 Male False 6098 True 4 Name: Male, dtype: int64 Manufacturer False 6101 True 1 Name: Manufacturer, dtype: int64 Model False 6101 True 1 Name: Model, dtype: int64 Power False 6097 True 5 Name: Power, dtype: int64 Price False 6097 True 5 Name: Price, dtype: int64 Total False 6097 True 5 Name: Total, dtype: int64 Transmission False 6098 True 4 Name: Transmission, dtype: int64 Unknown False 6097 True 5 Name: Unknown, dtype: int64
The value of a car's manufacturer can be one of the following: 'Renault', 'BMW', 'Volkswagen', 'Peugeot', 'Ford', 'Nissan', 'Honda', 'Toyota', 'Mercedes', 'Audi', 'Citroen', 'Skoda', 'Land-Rover', 'Seat', 'Fiat', 'Mini', 'Saab', 'Hyundai', 'Kia', 'Jaguar', 'Mazda', 'Suzuki', 'Volvo', 'Rover', 'Mitsubishi', 'Smart', 'Porsche', 'Subaru', 'MG', 'Chrysler', 'Chevrolet', 'Alfa-Romeo', 'Daihatsu', 'Bentley', 'Daewoo', 'Dacia', 'Dodge', 'Lotus', 'Aston-Martin', 'Abarth', 'Ssangyong', 'Lexus', 'Maserati', 'Opel', 'Ferrari', 'TVR', 'Triumph', 'Lada', 'Daimler', 'Lancia', 'Datsun', 'Morris'
The value of a car's model can be one of the following: 'Clio', '320i', 'Polo', '206', 'Mondeo', 'Micra', 'Civic', 'Ka+', 'Megane', 'Yaris', 'CLA', 'A4', 'Passat', 'A3', '307', '207', 'Xsara', 'Fabia', '118i', 'Freelander', 'C3', 'Corolla', '535i', 'Avensis', 'E', 'Scenic', 'Ibiza', 'Range', 'Qashqai+2', 'Octavia', '500L', 'A', 'Almera', 'C4', 'C5', 'C6', 'Two', 'One', 'RAV4', 'RAV5', '9-3X', '107', 'Aygo', 'I10', 'I11', 'A6', 'Picanto', 'Note', 'Leon', 'XE', 'Fusion', 'Accord', 'MX-5', '6', 'C1', 'Swift', 'Galaxy', '308', '3', 'TT', 'Laguna', '2', 'Panda', 'Auris', '306', '106', 'V70', 'Saxo', 'Touran', 'Beetle', 'Rio', 'C-MAX', 'X5', 'Juke', 'Vitara', 'Ceed', '406', 'Getz', 'X-Trail', 'CLK', 'S40', '75', 'Berlingo', 'Alto', 'Primera', 'I20', 'SLK', 'S-MAX', 'ML', 'Sportage', '407', 'C2', 'I30', 'XF', 'A1', 'Colt', 'A5', 'S-Type', 'V50', 'Escort', 'XC90', 'V40', 'X3', 'Tiguan', 'B', 'Fortwo', 'Bora', '45', '911', 'XJ', 'Impreza', '09-May', 'Celica', 'Sharan', 'Santa', '208', 'S60', 'DS3', 'Modus', 'ZR', 'Voyager', 'Sorento', 'Z4', '2000', 'Up', 'Jimny', 'Matiz', 'Boxster', 'Wagon', '3008', '323', 'Puma', 'Stilo', 'Scirocco', 'XK', 'Altea', 'C30', 'Accent', 'Lupo', 'Sprinter', 'Ix35', 'Kangoo', '5', 'Jetta', 'Alhambra', 'Espace', 'Ignis', 'SX4', 'Carens', 'Q5', 'Partner', 'Yeti', 'Touareg', 'Seicento', 'Superb', 'Bravo', 'X1', 'Q7', '147', 'MR2', '740i', 'TF', 'S80', 'Fox', 'Twingo', 'Lancer', 'Doblo', 'Eos', 'M3', 'PT', 'Matrix', 'IQ', 'SLS', 'A2', 'Z3', 'C70', 'Roomster', 'Splash', 'Previa', 'Starlet', 'Aveo', 'XC70', 'Tucson', 'Legacy', 'Cayenne', '156', '640i', 'Spark', 'Kalos', 'Outlander', 'Pixo', 'FR-V', 'Sirion', 'Mini', 'Venga', 'Streetka', 'Felicia', 'Terrano', 'Space', 'Carisma', 'Lacetti', 'ZT', 'CLC', 'Defender', 'Arosa', 'HR-V', 'City-coupe', 'Terios', 'Carina', 'Multipla', 'A8', 'Citigo', 'Liana', 'Continental', 'Captiva', 'Pathfinder', '205', '900', 'B-MAX', '940', 'Toledo', 'Ix20', '850', 'Verso-S', 'S3', '159', 'Lanos', 'C8', '626', 'Sandero', '807', '5008', 'Cayman', '300C', '300', 'Duster', '1007', '508', 'Xantia', 'RCZ', '350Z', 'Demio', 'S2000', '190', 'Trajet', 'Tacuma', 'GT', 'Premacy', 'ZX', 'V60', 'Brava', 'S4', 'X6', 'Caliber', 'Maverick', 'Streetwise', 'CityRover', 'Cerato', 'Elise', 'Cougar', 'Roadster-coupe', 'Vantage', 'I40', 'Cruze', 'Exeo', 'Urban', 'Mii', 'A7', '405', '500C', 'Transporter', 'Spider', 'DS4', 'Picnic', 'Viano', 'Ulysse', 'Sierra', 'DB9', '80', 'Neon', 'Terracan', 'M550i', 'Magentis', 'AX', 'RS4', 'Captur', 'Grandis', 'Crossfire', 'CR-Z', 'R', 'Stream', 'Idea', 'Prelude', 'Elantra', '607', 'Rexton', 'CC', 'Roadster', '806', '9000', 'S5', 'Nemo', 'Sonata', 'Capri', 'Sedici', 'Brera', '944', 'Cordoba', 'C-Crosser', 'Cabriolet', 'Cinquecento', 'Galant', 'Qubo', 'Lantra', 'Baleno', '440', 'GS', '2008', 'S70', 'GT86', 'Caddy', '4007', 'GLK', 'Camry', 'Nitro', 'Sebring', 'Shuma', 'Veloster', 'Patrol', 'Expert', 'R8', 'Wind', 'Rapid', 'DB7', 'Corrado', 'Supra', 'Marea', 'Serena', 'Vaneo', 'Panamera', 'Copen', 'Logo', 'Paceman', '960', 'Tribute', 'M135i', 'Shuttle', 'Trafic', 'Journey', 'Phaeton', 'Justy', 'Orlando', 'Vito', 'Granada', 'Bipper', '370Z', 'RS6', 'John', 'Hilux', 'Legend', 'MX-3', 'GranCabrio', 'Scorpio', 'Rodius', 'Mustang', '121', 'Coupe', 'Integra', 'Carrera', 'Croma', 'Zafira', 'GT-R', 'DS5', 'Korando', '309', '100', 'Quattro', 'Probe', 'Focus', 'Fiesta', 'Golf', 'Discovery', 'XKR', 'Pride', '19', 'Concerto', 'Leganza', 'Bluebird', 'MPV', 'Xedos', 'Pajero', 'Orion', 'Vento', 'Nexia', 'Mentor', '460', '166', 'Maxima', 'Paseo', 'F430', '850i', 'Uno', 'Favorit', '146', 'MX-6', '145', 'Safrane', 'Move', '928', 'Musso', 'Cooper', 'Tipo', 'Espero', 'XM', 'CRX', 'Tuscan', 'Vel', '21', 'Prairie', 'SJ', 'Esprit', 'Samurai', '360', 'Tempra', '155', 'Barchetta', '90', 'TR7', 'Pony', '605', '25', '164', '11', '505', 'Marbella', 'Acclaim', 'X-90', 'Samara', '305', 'Griffith', '9', '33', 'Manta', 'Applause', '4', '3.6', 'Delta', 'Silvia', 'Sunny', '126', 'Tercel', 'Niva', 'Stellar', '99', '120', 'Kadett', '18', 'Dedra', 'Cherry', 'Marina', 'Laurel', 'Regata', '130', 'Thema', 'Stanza', 'Ital', 'Strada', 'Santana', 'Double', '105', 'Malaga', 'Ascona', 'Monza', 'Fuego', 'Derby', '104', 'Transit', 'Prisma', 'Senator', '127', '200', 'Rekord', '929', 'Cressida', 'Quintet', '14', '20', '1200', '504'
The price of a car should be more than 0.0 and should not be larger than 650.0.
The transmission of a car should be more than 0.0 and should not be larger than 10.
Power (BHP) of the car, the power of a car should be more than 0.0 and should not be larger than 500.
Engine size in CC, the engine CC of a car should be more than 0.0 and should not be larger than 6,500.
Manufacturer_list = ['Renault', 'BMW', 'Volkswagen', 'Peugeot', 'Ford', 'Nissan', 'Honda', 'Toyota', 'Mercedes', 'Audi', 'Citroen', 'Skoda', 'Land-Rover', 'Seat', 'Fiat', 'Mini', 'Saab', 'Hyundai', 'Kia', 'Jaguar', 'Mazda', 'Suzuki', 'Volvo', 'Rover', 'Mitsubishi', 'Smart', 'Porsche', 'Subaru', 'MG', 'Chrysler', 'Chevrolet', 'Alfa-Romeo', 'Daihatsu', 'Bentley', 'Daewoo', 'Dacia', 'Dodge', 'Lotus', 'Aston-Martin', 'Abarth', 'Ssangyong', 'Lexus', 'Maserati', 'Opel', 'Ferrari', 'TVR', 'Triumph', 'Lada', 'Daimler', 'Lancia', 'Datsun', 'Morris']
merged_df = merged_df[merged_df['Manufacturer'].isin(Manufacturer_list)]
merged_df.shape
(6097, 11)
Model_list = ['Clio', '320i', 'Polo', '206', 'Mondeo', 'Micra', 'Civic', 'Ka+', 'Megane', 'Yaris', 'CLA', 'A4', 'Passat', 'A3', '307', '207', 'Xsara', 'Fabia', '118i', 'Freelander', 'C3', 'Corolla', '535i', 'Avensis', 'E', 'Scenic', 'Ibiza', 'Range', 'Qashqai+2', 'Octavia', '500L', 'A', 'Almera', 'C4', 'C5', 'C6', 'Two', 'One', 'RAV4', 'RAV5', '9-3X', '107', 'Aygo', 'I10', 'I11', 'A6', 'Picanto', 'Note', 'Leon', 'XE', 'Fusion', 'Accord', 'MX-5', '6', 'C1', 'Swift', 'Galaxy', '308', '3', 'TT', 'Laguna', '2', 'Panda', 'Auris', '306', '106', 'V70', 'Saxo', 'Touran', 'Beetle', 'Rio', 'C-MAX', 'X5', 'Juke', 'Vitara', 'Ceed', '406', 'Getz', 'X-Trail', 'CLK', 'S40', '75', 'Berlingo', 'Alto', 'Primera', 'I20', 'SLK', 'S-MAX', 'ML', 'Sportage', '407', 'C2', 'I30', 'XF', 'A1', 'Colt', 'A5', 'S-Type', 'V50', 'Escort', 'XC90', 'V40', 'X3', 'Tiguan', 'B', 'Fortwo', 'Bora', '45', '911', 'XJ', 'Impreza', '09-May', 'Celica', 'Sharan', 'Santa', '208', 'S60', 'DS3', 'Modus', 'ZR', 'Voyager', 'Sorento', 'Z4', '2000', 'Up', 'Jimny', 'Matiz', 'Boxster', 'Wagon', '3008', '323', 'Puma', 'Stilo', 'Scirocco', 'XK', 'Altea', 'C30', 'Accent', 'Lupo', 'Sprinter', 'Ix35', 'Kangoo', '5', 'Jetta', 'Alhambra', 'Espace', 'Ignis', 'SX4', 'Carens', 'Q5', 'Partner', 'Yeti', 'Touareg', 'Seicento', 'Superb', 'Bravo', 'X1', 'Q7', '147', 'MR2', '740i', 'TF', 'S80', 'Fox', 'Twingo', 'Lancer', 'Doblo', 'Eos', 'M3', 'PT', 'Matrix', 'IQ', 'SLS', 'A2', 'Z3', 'C70', 'Roomster', 'Splash', 'Previa', 'Starlet', 'Aveo', 'XC70', 'Tucson', 'Legacy', 'Cayenne', '156', '640i', 'Spark', 'Kalos', 'Outlander', 'Pixo', 'FR-V', 'Sirion', 'Mini', 'Venga', 'Streetka', 'Felicia', 'Terrano', 'Space', 'Carisma', 'Lacetti', 'ZT', 'CLC', 'Defender', 'Arosa', 'HR-V', 'City-coupe', 'Terios', 'Carina', 'Multipla', 'A8', 'Citigo', 'Liana', 'Continental', 'Captiva', 'Pathfinder', '205', '900', 'B-MAX', '940', 'Toledo', 'Ix20', '850', 'Verso-S', 'S3', '159', 'Lanos', 'C8', '626', 'Sandero', '807', '5008', 'Cayman', '300C', '300', 'Duster', '1007', '508', 'Xantia', 'RCZ', '350Z', 'Demio', 'S2000', '190', 'Trajet', 'Tacuma', 'GT', 'Premacy', 'ZX', 'V60', 'Brava', 'S4', 'X6', 'Caliber', 'Maverick', 'Streetwise', 'CityRover', 'Cerato', 'Elise', 'Cougar', 'Roadster-coupe', 'Vantage', 'I40', 'Cruze', 'Exeo', 'Urban', 'Mii', 'A7', '405', '500C', 'Transporter', 'Spider', 'DS4', 'Picnic', 'Viano', 'Ulysse', 'Sierra', 'DB9', '80', 'Neon', 'Terracan', 'M550i', 'Magentis', 'AX', 'RS4', 'Captur', 'Grandis', 'Crossfire', 'CR-Z', 'R', 'Stream', 'Idea', 'Prelude', 'Elantra', '607', 'Rexton', 'CC', 'Roadster', '806', '9000', 'S5', 'Nemo', 'Sonata', 'Capri', 'Sedici', 'Brera', '944', 'Cordoba', 'C-Crosser', 'Cabriolet', 'Cinquecento', 'Galant', 'Qubo', 'Lantra', 'Baleno', '440', 'GS', '2008', 'S70', 'GT86', 'Caddy', '4007', 'GLK', 'Camry', 'Nitro', 'Sebring', 'Shuma', 'Veloster', 'Patrol', 'Expert', 'R8', 'Wind', 'Rapid', 'DB7', 'Corrado', 'Supra', 'Marea', 'Serena', 'Vaneo', 'Panamera', 'Copen', 'Logo', 'Paceman', '960', 'Tribute', 'M135i', 'Shuttle', 'Trafic', 'Journey', 'Phaeton', 'Justy', 'Orlando', 'Vito', 'Granada', 'Bipper', '370Z', 'RS6', 'John', 'Hilux', 'Legend', 'MX-3', 'GranCabrio', 'Scorpio', 'Rodius', 'Mustang', '121', 'Coupe', 'Integra', 'Carrera', 'Croma', 'Zafira', 'GT-R', 'DS5', 'Korando', '309', '100', 'Quattro', 'Probe', 'Focus', 'Fiesta', 'Golf', 'Discovery', 'XKR', 'Pride', '19', 'Concerto', 'Leganza', 'Bluebird', 'MPV', 'Xedos', 'Pajero', 'Orion', 'Vento', 'Nexia', 'Mentor', '460', '166', 'Maxima', 'Paseo', 'F430', '850i', 'Uno', 'Favorit', '146', 'MX-6', '145', 'Safrane', 'Move', '928', 'Musso', 'Cooper', 'Tipo', 'Espero', 'XM', 'CRX', 'Tuscan', 'Vel', '21', 'Prairie', 'SJ', 'Esprit', 'Samurai', '360', 'Tempra', '155', 'Barchetta', '90', 'TR7', 'Pony', '605', '25', '164', '11', '505', 'Marbella', 'Acclaim', 'X-90', 'Samara', '305', 'Griffith', '9', '33', 'Manta', 'Applause', '4', '3.6', 'Delta', 'Silvia', 'Sunny', '126', 'Tercel', 'Niva', 'Stellar', '99', '120', 'Kadett', '18', 'Dedra', 'Cherry', 'Marina', 'Laurel', 'Regata', '130', 'Thema', 'Stanza', 'Ital', 'Strada', 'Santana', 'Double', '105', 'Malaga', 'Ascona', 'Monza', 'Fuego', 'Derby', '104', 'Transit', 'Prisma', 'Senator', '127', '200', 'Rekord', '929', 'Cressida', 'Quintet', '14', '20', '1200', '504']
merged_df = merged_df[merged_df['Model'].isin(Model_list)]
merged_df.shape
(5950, 11)
merged_df.columns
Index(['Engine CC', 'Female', 'Fuel', 'Male', 'Manufacturer', 'Model', 'Power', 'Price', 'Total', 'Transmission', 'Unknown'], dtype='object')
merged_df = merged_df[(merged_df.Price < 650.0) & (merged_df.Price > 0.0 ) & (merged_df.Transmission < 10.0) & (merged_df.Transmission > 0.0 ) & (merged_df.Power < 500.0) & (merged_df.Power > 0.0 ) & (merged_df['Engine CC'] < 6500.0) & (merged_df['Engine CC'] > 0.0 )]
merged_df.shape
(5933, 11)
missing_data = merged_df.isnull()
missing_data.head(5)
Engine CC | Female | Fuel | Male | Manufacturer | Model | Power | Price | Total | Transmission | Unknown | |
---|---|---|---|---|---|---|---|---|---|---|---|
3 | False | False | False | False | False | False | False | False | False | False | False |
4 | False | False | False | False | False | False | False | False | False | False | False |
5 | False | False | False | False | False | False | False | False | False | False | False |
6 | False | False | False | False | False | False | False | False | False | False | False |
7 | False | False | False | False | False | False | False | False | False | False | False |
#Checking for missing values in each column
#False = No NULL/Missing value
for column in missing_data.columns.values.tolist():
print(column)
print (missing_data[column].value_counts())
Engine CC False 5933 Name: Engine CC, dtype: int64 Female False 5933 Name: Female, dtype: int64 Fuel False 5933 Name: Fuel, dtype: int64 Male False 5933 Name: Male, dtype: int64 Manufacturer False 5933 Name: Manufacturer, dtype: int64 Model False 5933 Name: Model, dtype: int64 Power False 5933 Name: Power, dtype: int64 Price False 5933 Name: Price, dtype: int64 Total False 5933 Name: Total, dtype: int64 Transmission False 5933 Name: Transmission, dtype: int64 Unknown False 5933 Name: Unknown, dtype: int64
merged_df.dtypes
Engine CC float64 Female object Fuel object Male object Manufacturer object Model object Power float64 Price float64 Total object Transmission float64 Unknown object dtype: object
merged_df[["Transmission"]] = merged_df[["Transmission"]].astype("int")
merged_df[["Power"]] = merged_df[["Power"]].astype("int")
merged_df[["Engine_CC"]] = merged_df[["Engine CC"]].astype("int")
merged_df = merged_df.replace(',','', regex=True)
merged_df[["Male"]] = merged_df[["Male"]].astype(str).astype(int)
merged_df[["Female"]] = merged_df[["Female"]].astype(str).astype(int)
merged_df[["Unknown"]] = merged_df[["Unknown"]].astype(str).astype(int)
merged_df[["Total"]] = merged_df[["Total"]].astype(str).astype(int)
merged_df.dtypes
Engine CC float64 Female int32 Fuel object Male int32 Manufacturer object Model object Power int32 Price float64 Total int32 Transmission int32 Unknown int32 Engine_CC int32 dtype: object
merged_df.head()
Engine CC | Female | Fuel | Male | Manufacturer | Model | Power | Price | Total | Transmission | Unknown | Engine_CC | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
3 | 1219.653846 | 312556 | petrol | 241287 | Renault | Clio | 75 | 22.10000 | 581847 | 5 | 28004 | 1219 |
4 | 1995.777778 | 115843 | petrol | 408016 | BMW | 320i | 126 | 47.84837 | 552984 | 6 | 29125 | 1995 |
5 | 1408.055556 | 299110 | petrol | 216333 | Volkswagen | Polo | 60 | 18.19250 | 547144 | 5 | 31701 | 1408 |
6 | 1631.500000 | 250614 | petrol | 178698 | Peugeot | 206 | 71 | 20.03375 | 455447 | 4 | 26135 | 1631 |
7 | 1998.500000 | 69603 | petrol | 357452 | Ford | Mondeo | 130 | 39.97375 | 443605 | 1 | 16550 | 1998 |
merged_df.to_csv('cleaned_car_buyers.csv', index=False)